A new way of synthesis of non-linear optical potassium niobate powder

HONGMING ZHOU^{*}, SHILI ZHENG, YI ZHANG Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, People's Republic of China E-mail: ipezhm@yahoo.com.cn

Potassium niobate (KNbO₃) (KN) is a ferroelectric material having high electro-optic and non-linear optical coefficients and excellent photo-refractive characteristics. Furthermore, KNbO₃ has large piezoelectric constants. This material attracts great interest for application in optical waveguides, frequency doubles and holographic storage systems [1-4].

In general, the fundamental synthesis processes for ceramics basically use heat treatment for the reaction of mixed raw materials [5, 6]. The reaction rate of these kinds of processes is limited by solid state diffusion. For example, synthesis of KNbO₃ requires 30 h of heating [7] of the reactants at 1273 K and cooling at a very slow rate. Fig. 1 shows the phase diagram [8] of K₂O-Nb₂O₅ components. Single crystals are grown from the KNbO₃ + liquid phase. However, the high-temperature heating not only is energy consuming, but also causes unfavourable grain growth of particles of the reaction product, and pure phase KNbO₃ is difficult to obtain [9].

When solution processes, such as sol–gel and precipitation methods are used, KNbO₃ can be obtained, but the required calcinations temperature has to be higher than 600 °C [10, 11]. In order to reduce the synthesis time of KNbO₃, microwave assisted solid-state synthesis of potassium niobate has been reported with considerably shorter reaction times. The method takes less than 20 min for the preparation and good crystalline products of high phase purity are obtained [12]. For reducing the synthesis temperature of KNbO₃, hydrothermal synthesis of potassium niobate has been reported by Chung-hsin Lu *et al.* [13, 14]. When KOH, with a concentration of 8 M reacted with Nb₂O₅ particles at 200 °C, monophasic KNbO₃ was obtained.

We report here the high concentration medium of caustic potash synthesis of micro crystalline, single phase KNbO₃ through the reaction of commercial Nb₂O₅ with KOH (65–68%) at 200 °C under atmospheric pressure. The conditions for obtaining KNbO₃ in the reaction were first determined. Then the effect of the amounts of raw materials on the morphology of the reaction product was analyzed.

All the chemical reagents employed were of analytical grade and the deionized water was used for the experiments. The niobium pentoxide used was supplied by the Ningxia Orient Tantalum Industry Co., Ltd, which is located in Ningxia municipality, P.R. China. The batch reactor used in this work was a 400-ml teflon-lined nickel stainless steel canister equipped with a thermometer, a mechanical stirrer and a reflux condenser. The reactor was heated by an oil bath, whose temperature was thermostatically controlled by an electrical bar, with a precision of ± 1 °C. Fig. 2 illustrates the experimental apparatus used in this work.

All the experiments were conducted in batches. For each run, 130 g solid KOH was first charged into the reactor, and deionized water of the required amount was added. Then the system was heated to the required temperature under continuous stirring. When the temperature reached the pre-set value and remained stable, a certain amount of niobium pentoxide was added to the reactor. Then, the mixture of all the reactants was intensively stirred under atmospheric pressure. After maintaining for the required time, the reactor was taken out from oil-bath, cooled immediately by force air, the obtained powders were washed with pure water and finally dried in an oven to remove the absorbed water at 105 °C for 12 h. The compounds present in the powders were identified via X-ray powder diffraction (XRD, Rigaku D/Max-3c, Cu K_{α} radiation). The particle size and morphology of the samples were investigated by scanning electron microscopy (SEM, Hitachi Model S-3500N).

Potassium hydroxide was reacted with niobium pentoxide under various conditions and the compounds formed in the obtained products are summarized in Table I. The products determined by X-ray diffraction analysis are classified into four categories (A to D).

It was found that, at 150 °C and a concentration of KOH (50-75%), only a small amount of Nb₂O₅ existed in the products, most of Nb₂O₅ was converted into soluble potassium niobate, even with the reaction time prolonged to 180 min. When the reaction temperature was 200 °C, and the concentration of KOH was 65-68%, a large amount of KNbO3 was crystallized. With the increase of the concentration of KOH, the amount of KNbO₃ decreased steadily. When the concentration of KOH was increased to 85%, after the dissolution of Nb2O5 in the medium of caustic potash at 200–260 $^{\circ}$ C, all of Nb₂O₅ was dissolved in the solution. However, no precipitates were formed. For a concentration of KOH equal to 75%, a small amount of KNbO₃ was obtained after the 200 °C-reaction, however, a large amount of KNbO3 was formed after 260 °C-reaction. The above results reveal that the concentration of KOH

^{*}Author to whom all correspondence should be addressed.

Figure 1 Phase diagram of K₂O-Nb₂O₅.

Figure 2 Experimental apparatus.

and temperature are two critical controlling factors for synthesizing $KNbO_3$. At a low temperature, there is no potassium niobate formed, and most of the Nb_2O_5 was converted into soluble niobate.

In a parallel experiment, KNbO₃ was prepared via the conventional solid-state reaction using Nb₂O₅ and KOH particles as raw materials. The mixed raw materials were calcined at elevated temperatures for 2 h. A small amount of KNbO₃ appeared after calcination at 500 °C and the formation of KNbO₃ became nearly complete at 650 °C. Although the same raw materials were used in both the solid-state and the new process, the reactivity of materials in solid form was apparently inferior to that in solution state. Compared with the solid-state reaction, the new process significantly reduces the synthesis temperature for obtaining pure KNbO₃ powders.

As listed in Table I, when the concentration of KOH was fixed at 65% and the reaction temperature was fixed

200 °C, the amounts of Nb₂O₅ were accordingly adjusted to be 1, 3 and 6 g, respectively. Under these conditions, the prepared KNbO₃ powders were denoted as KN-1, KN-2 and KN-3. The XRD patterns of these three samples are illustrated in Fig. 3.

As shown in Fig. 2, no Nb_2O_5 remained in the products. All diffraction peaks were attributed to KNbO₃. KN-1, KN-2 and KN-3 exhibited a pseudocubic structure. The XRD patterns of these powders were consistent with that reported in JCPDS No. 32-0822. The above results imply that the addition of various

TABLE I Products formed in the reaction between KOH and $\rm Nb_2O_5$ at various conditions under atmospheric pressure

No.	Temperature (°C)	Concentration of KOH (%)	Reaction time (min)	Mass of Nb ₂ O ₅ (g)	Products
1	150	50	30	1	А
2	150	50	180	1	А
3	150	65	30	3	А
4	150	75	30	6	А
5	200	65	30	1	С
6	200	65	30	2	С
7	200	65	30	6	С
8	200	68	30	1	С
9	200	68	30	3	С
10	200	75	30	1	В
11	200	75	30	3	В
12	200	85	30	1	D
13	200	85	30	3	D
14	200	85	120	1	D
15	225	68	30	1	С
16	225	75	120	3	В
17	225	85	180	6	D
18	260	75	30	1	С
19	260	85	180	6	D

A: a small amount of Nb₂O₅; B: a small amount of KNbO₃; C: KNbO₃; D: No precipitation.

Figure 3 X-ray diffraction patterns of KNbO₃ powders obtained in high concentration medium of caustic potash: (a) KN-1, (b) KN-2 and (c) KN-3.

Figure 4 Scanning electron micrograph of as-prepared KNbO₃ powders.

amounts of Nb_2O_5 has no influence on the crystalline structure of $KNbO_3$.

The microstructure of as-prepared $KNbO_3$ powders is shown in Fig. 3.

Fig. 3 indicates that the ultrafine particles of KNbO₃ were obtained in the highly concentrated medium of caustic potash and its morphology was independent of the amount of Nb₂O₅ used. The particle of the sample exhibited an equal-axial morphology. When the sample was further heated at 1000 °C, its microstructure is shown as Fig. 4; the particle have not changed significantly and particle size was around 2–3 μ m.

In Summary, monophasic KNbO₃ powders were successfully prepared in the highly concentrated medium of caustic potash under atmospheric pressure. The synthesis temperature was as low as 200 °C, and the concentration of KOH was 65–68%.

For the traditional solid-state reaction, the temperature for the production of KNbO₃ is as high as 650 °C. Using the new process effectively reduced the synthesis temperature of KNbO₃. Also, compared to the

Figure 5 Scanning electron micrograph of the $1000 \,^{\circ}\text{C}$ -heated KNbO₃ powders.

hydrothermal process, the new process does not need high-pressure equipments, and has more important economical benefit.

The morphology and the particle size of KNbO₃ powders were independent of the added amount of Nb₂O₅ and subsequent heat treatment temperature of KNbO₃.

Acknowledgment

Financial support from the National Natural Science Foundation of China under Grant No. 50234040 is gratefully acknowledged.

References

- 1. P. GUNTER, Phys. Rep. 93 (1982) 199.
- 2. M. K. CHUN, L. GOLDBERG and J. F. WELLER, *Appl. Phys. Lett.* **53** (1988) 1170.
- 3. A. F. WEELLS, in "Structural Inorganic Chemistry," 4th ed. (Clarendon Press, Oxford, 1975) Chap. 13.
- 4. YAMIN LEI and XUEMING YANG, J. Synth. Cryst. 29 (2001) 87.
- 5. F. FAIRBROTHER, "The Chemistry of Niobium and Tantalum" (Elsevier, Amsterdam, 1967).
- D. BROWN, in "Comprehensive Inorganic Chemistry," edited by J. C. Bailar, H.J. Emeleus, R. Nyholm and A. F. Trotman-Dickerson (Pergamon, Oxford, 1973) Vol. 3, p. 553.
- 7. E. A. WOOD, Acta Crystallogr. 4 (1951) 353.
- 8. KAZUHIKO YAMANOUCHI, YASUO WAGATSUMA, HIROYUKI ODAGAWA and YASUO CHO, *J. Amer. Ceram. Soc.* **21** (2001) 2791.
- 9. U. FIUCKIJER, H. AREND and H. R. OSWALD, *ibid.* 56 (1977) 575.
- 10. M. M. AMNI and M. D. SACKS, *ibid.* 74 (1991) 53.
- 11. K. J. KIM and E. MATIJEVIC, J. Mater. Res. 7 (1992) 912.
- B. VALDHYANTHAN, P. RALZADA and K. J. RAO, J. Mater. Sci. Lett. 16 (1997) 2022.
- 13. CHUNG-HSIN LU, SHIH-YEN LO and HONG-CHEU LIN, *Mater. Lett.* 34 (1998) 172.
- 14. I. C. M. S. SANTOS, L. H. LOUREIRO, M. F. P. SILVA and ANA M. V. CAVALEIRO, *Polyhedron.* 21 (2002) 2009.

Received 19 September and accepted 11 November 2003